Publications

2020 Publications

  1. Dzaugis, P.W., Evans, S.D., Droser, M.L., Gehling, J.G., and Hughes, I.V. 2020. Stuck in the Mat: Obamus coronatus, a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia. Australian Journal of Earth Sciences, 67: 897-903. doi: 10.1080/08120099.2018.1479306​​
  2. Evans, S.D., Dzaugis, P.W., Droser, M.L., and Gehling, J.G. 2020. You can get anything you want from Alice’s Restaurant Bed: exceptional preservation and an unusual fossil assemblage from a newly excavated bed (Ediacara Member, Nilpena, South Australia). Australian Journal of Earth Sciences, 67: 873-883. doi: 10.1080/08120099.2018.1470110​
  3. Hall, C.M.S., Droser, M.L., Clites, E.C., and Gehling, J.G. 2020. The short-lived but successful tri-radial body plan: a view from the Ediacaran of Australia. Australian Journal of Earth Sciences, 67.6: 885-895. doi: 10.1080/08120099.2018.1472666​​

2019 Publications

  1. Álvaro, J.J. and González-Acebrón, L. 2019. Sublacustrine hydrothermal seeps and silicification of microbial bioherms in the Ediacaran Oued Dar’a caldera, Anti-Atlas, Morocco. Sedimentology. doi: 10.1111/sed.12568
  2. Dunn, F.S., Wilby, P.R., Kenchington, C.G., Grazhdankin, D.V., Donoghue, P.C.J., and Liu, A.G. 2019. Anatomy of the Ediacaran rangeomorph Charnia masoni. Papers in Palaeontology, 5: 157-176. doi: 10.1002/spp2.1234​​
  3. Fazio⁠, G., Guimarães⁠, E.M., Walde⁠, D.W.G., do Carmo⁠, D.A., Adorno, R.R., Vieira, L.C., Denezine, M., da Silva, C.B., de Godoy⁠, H.V., Borges, P.C., and Pinho, D. 2019. Mineralogical and chemical composition of Ediacaran-Cambrian pelitic rocks of the Tamengo and Guaicurus formations, (Corumbá Group-MS, Brazil): Stratigraphic positioning and paleoenvironmental interpretations. Journal of South American Earth Sciences, 90: 487-503. doi: 10.1016/j.jsames.2018.11.025
  4. Hughes, N.C., Myrow, P.M., Ghazi, S., McKenzie, N.R., and DiPietro, J.A. 2019. The Cambrian geology of the Salt Range of Pakistan: linking the Himalayan margin to the Indian craton: Geological Society of America Bulletin, 132: 446–448. doi: 10.1130/B35365.1
  5. Linnemann, U., Ovtcharova, M., Schaltegger, U., Gärtner, A., Hautmann, M., Geyer, G., Vickers-Rich, P., Rich, T., Plessen, B., Hofmann, M., Zieger, J., Krause, R., Kriesfeld, L., and Smith, J. 2019. New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion. Terra Nova, 31: 49-58. doi: 10.1111/ter.12368
  6. MacGabhann, B.A., Schiffbauer, J.D., Hagadorn, J.W., Van Roy, P., Lynch, E.P., Morrison, L., and Murray, J. 2019. Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts. Palaeogeography, Palaeoclimatology, Palaeoecology, 513: 146–165. doi: 10.1016/j.palaeo.2018.11.009
  7. Myrow, P.M., Hughes, N.C., and McKenzie, N.R. 2019. Reconstructing the Himalayan margin prior to collision with Asia: Proterozoic and lower Paleozoic geology and its implications for Cenozoic tectonics. Geological Society, London, Special Publications, 483: 39-64. doi: 10.1144/SP483.10 ​
  8. Ouyang, Q., Zhou, C., Xiao, S., Chen, Z., and Shao, Y. 2019. Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes. Precambrian Research, 320: 171-192. doi 10.1016/j.precamres.2018.10.012
  9. Reis, L.I., Warren, L.V., Okubo, J., Simoes, M.G., Quaglio, F., Arrouy, M.J., and Netto, R.G. 2019. Discs and discord: the paleontological record of Ediacaran discoidal structures in the South American continent. Journal of South American Earth Sciences, 89: 319-336. doi: 10.1016/j.jsames.2018.11.023
  10. Retallack, G.J., 2019. Interflag sandstone laminae, a novel fluvial sedimentary structure with implications for Ediacaran paleoenvironments. Sedimentary Geology, 379: 60-76. doi: 10.1016/j.sedgeo.2018.11.003
  11. Tostevin, R., Clarkson, M.O., Gang, S., Shields, G.A., Wood, R.A., Bowyer, F., Penny, A.M., and Stirling, C.H. 2019. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth Planetary Science Letters, 506: 104-112. doi: 10.1016/j.epsl.2018.10.045​
  12. Zhou, C., Yuan, X., Xiao, S., Chen, Z., and Hua, H. 2019. Ediacaran integrative stratigraphy and timescale of China. Science China Earth Sciences, 61: 7-24. doi: 10.1007/s11430-017-9216-2​
  13. Zhu, M., Yang, A., Yuan, J., Li, G., Zhang, J., Zhao, F., Ahn, S.-Y., and Miao, L. 2019. Cambrian integrative stratigraphy and timescale of China. Science China Earth Sciences, 62: 25-60. doi: 10.1007/s11430-017-9291-0

2018 Publications

  1. Boyle, R., Dahl, T.W., Bjerrum, C.J. and Canfield, D. 2018. Bioturbation and directionality in Earth’s carbon isotope record across the Neoproterozoic–Cambrian transition. Geobiology, 16: 252-278. doi: 10.1111/gbi.12277
  2. Buatois, L.A., Almond, J., Mángano, M.G., Jensen, S., and Germs, G.J. 2018. Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion. Scientific Reports, 8: 4514. doi: 10.1038/s41598-018-22859-9
  3. Buatois, L.A. 2018. Treptichnus pedum and the Ediacaran-Cambrian boundary: Significance and caveats. Geological Magazine 155: 174-180. doi: 10.1017/S0016756817000656
  4. Cheng, M., Li, C., Chen, X., Zhou, L., Algeo, T.J., Ling, H., Feng, L., and Jin, C. 2018. Delayed Neoproterozoic oceanic ox ygenation: Evidence from Mo isotopes of the Cryogenian Datangpo Formation. Precambrian Research, 319: 187-197. doi: 10.1016/j.precamres.2017.12.007
  5. Chen, Z., Chen, X., Zhou, C., Yuan, X., and Xiao, S. 2018. Late Ediacaran trackways produced by bilaterian animals with paired appendages. Science Advances, 4: eaao6691. doi: 10.1126/sciadv.aao6691
  6. Chengsheng, J., Li, C., Algeo, T.J., O’Connell, B., Cheng, M., Shi, W., Shen, J., and Planavsky, N.J. 2018. Highly heterogeneous “poikiloredox” conditions in the early Ediacaran Yangtze Sea. Precambrian Research, 31: 157-166. doi: 10.1016/j.precamres.2018.04.012
  7. Coutts, F.J., Bradshaw, C.J.A., García-Bellido, D.C., and Gehling, J.G. 2018. Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: Implications and autecological interpretations. Gondwana Research, 55: 21-29. doi: 10.1016/j.gr.2017.10.009
  8. Cui, H., Kaufman, A.J., Peng, Y., Liu, X.M., Plummer, R.E., and Lee, E.I. 2018. The Neoproterozoic Hüttenberg δ13C anomaly: Genesis and global implications. Precambrian Research, 313: 242–262. doi: 10.1016/j.precamres.2018.05.024
  9. Cui, H., Kitajima, K., Spicuzza, M.J., Fournelle, J.H., Ishida, A., Denny, A., Zhang, F., and Valley, J.W. 2018. Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS. American Mineralogist, 103: 1362–1400. doi: 10.2138/am-2018-6489
  10. Darroch, S.A.F., Laflamme, M., and Wagner, P.J. 2018. High ecological complexity in benthic Ediacaran communities. Nature Ecology and Evolution, 2: 1541–1547. doi: 10.1038/s41559-018-0663-7
  11. Darroch, S.A.F., Smith, E.F., Laflamme, M., and Erwin, D.H. 2018. Ediacaran extinction and Cambrian explosion. Trends in Ecology and Evolution, 33: 653-663. doi: 10.1016/j.tree.2018.06.003
  12. Davies, N.S., Liu, A.G., Gibling, M.R., and Miller, R.F. 2018. Reply to Comment on the paper by Davies et al. “Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes” (Earth Science Reviews, 154 (2016), 210-246). Earth Science Reviews, 176: 384-386. doi: 10.1016/j.earscirev.2017.11.024
  13. Dececchi, A.T., Narbonne, G.M., Greentree, C., and Laflamme, M. 2018. Phylogenetic relationships among the Rangeomorpha: The importance of outgroup selection and implications for their diversification. Canadian Journal of Earth Sciences, 55: 1223–1239. doi: 10.1139/cjes-2018-0022
  14. Delarue, F., Robert, F., Tartese, R., Sugitani, K., Tang, Q., Duhamel, Pont, S., and Xiao, S. 2018. Can NanoSIMS probe quantitatively the geochemical composition of ancient organic walled microfossils? A case study from the early Neoproterozoic Liulaobei Formation. Precambrian Research, 311: 65-73. doi: 10.1016/j.precamres.2018.03.003
  15. Droser, M.L., Evans, S.D., Dzaugis, P.W., Hughes, E.B., and Gehling, J.G., 2018. Attenborites janeae: A new enigmatic organism from the Ediacara Member (Rawnsley Quartzite), South Australia. Australian Journal of Earth Sciences, 66: 1-7. doi: 10.1080/08120099.2018.1495668
  16. Droser, M.L., Gehling, J.G., Tarhan, L.G., Evans, S.D., Hall, C.M.S., Hughes, I.V., Hughes, E.B., Dzaugis, M.E., Dzaugis, M.P., Dzaugis, P.W., and Rice, D. 2019. Piecing together the puzzle of the Ediacara Biota: Excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia): Palaeogeography, Palaeoclimatology, Palaeoecology, 513: 132-145. doi: 10.1016/j.palaeo.2017.09.00
  17. Dunn, F.S., Liu, A.G., and Donoghue, P.C.J. 2018. Ediacaran developmental biology. Biological Reviews, 93: 914-932. doi: 10.1111/brv.12379
  18. Evans, S.D., Diamond, S.W., Droser, M.L., and Lyons, T.W. 2018. Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerging Topics in Life Sciences, 2: 223-233. doi: 10.1042/ETLS20170148
  19. Gehling, J.G., and Droser, M.L. 2018. Ediacaran scavenging as a prelude to predation. Emerging Topics in Life Sciences, 2: 213-222. doi: 10.1042/ETLS20170166
  20. Gibson, B.M., Schiffbauer, J.D., and Darroch, S.A.F. 2018. Ediacaran-style decay experiments using mollusks and sea anemones. Palaios, 33: 185–203. doi: 10.2110/palo.2017.091
  21. Gougeon, R.C., Mángano, M.G., Buatois, L.A., Narbonne, G.M., and Laing, B.A. 2018. Early Cambrian origin of the shelf sediment mixed layer. Nature Communications, 9: 1-7. doi: 10.1038/s41467-018-04311-8
  22. Hantsoo, K., Kaufman, A.J., Cui, H., Plummer, R.E., Narbonne, G.M. 2018. Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland. Canadian Journal of Earth Sciences, 55: 1240–1252. doi: 10.1139/cjes-2017-0274
  23. Hu, C., Zhao, F., Ji, Q., and Zhu, M. 2018. The basal Ediacaran cap carbonate in the Ningzhen Mountain area, South China. Journal of Stratigraphy, 42: 381-392. (in Chinese with English abstract).
  24. Kochnev B.B., Pokrovsky B.G., Kuznetsov A.B., Marusin V.V. 2018. C and Sr isotope chemostratigraphy of Vendian-Lower Cambrian carbonate sequences in the central Siberian Platform. Russian Geology and Geophysics, 59: 585-605. doi: 10.1016/j.rgg.2018.05.001
  25. Kolesnikov, A.V., Liu, A.G., Danelian, T., and Grazhdankin, D.V. 2018. A reassessment of the problematic Ediacaran genus Orbisiana Sokolov 1976. Precambrian Research, 316: 197-205. doi: 10.1016/j.precamres.2018.08.011
  26. Laflamme, M., Gehling, J.G., and Droser, M. L. 2018. Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia. Journal of Paleontology, 92: 323-335. doi: 10.1017/jpa.2017.128​
  27. Laing, B.A., Buatois, L.A., Mángano, M.G., Narbonne, G.M., and Gougeon, R.C. 2018. Gyrolithes from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: Exploring the onset of complex burrowing. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 171- 185. doi: 10.1016/j.palaeo.2018.01.010
  28. Lang, X., Chen, J., Cui, H., Man, L., Huang, K J., Fu, Y., Zhou, C., and Shen, B. 2018. Cyclic cold climate during the Nantuo glaciation: evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310: 243–255. doi: 10.1016/j.precamres.2018.03.004
  29. Lang, X., Shen, B., Peng, Y., Xiao, S., Zhou, C., Bao, H., Kaufman, A.J., Huang, K., Crockford, P.W., Liu, Y., and Ma, H. 2018. Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 9: 1-8. doi: 10.1038/s41467-018-05423-x
  30. Li, C., Cheng, M., Zhu, M., and Lyons, T.W. 2018. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution. Emerging Topics in Life Sciences, 2: 279-288. doi: 10.1042/ETLS20170157​
  31. Litvinova, T.V. and Sergeev, V.N. 2018. Biogenic microstructures in stromatolites of the Baikal–Patom Highland: Results of complex study. Lithology and Mineral Resources, 53: 159–169. doi: 10.1134/S0024490218020025
  32. Liu, A.G., Matthews, J.J., McIlroy, D., Narbonne, G.M., Landing, E., Menon, L.R. and Laflamme, M. 2018. International Symposium on the Ediacaran–Cambrian Transition (ISECT) 2017 15–29th June 2017, Newfoundland, Canada. Episodes, 41: 129-133.
  33. Liu. A.G., Matthews, J.J., McIlroy, D., Narbonne, G.M., Landing, E., Menon, L.R., and Laflamme, M. 2018. Geobiology of the Ediacaran-Cambrian Transition: ISECT 2017. Canadian Journal of Earth Sciences, 55: v-vi. doi: 10.1139/cjes-2018-0244
  34. Lyons, T.W., Droser, M.L., Lau, K.V., and Porter, S.M. 2018. Early earth and the rise of complex life. Emerging Topics in Life Sciences, 2: 121-124. doi: 10.1042/ETLS20180093
  35. Miao, L., Moczydłowska, M., Zhu, S., and Zhu, M. 2018. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198. doi: 10.1016/j.precamres.2018.11.019
  36. Mills, D.B., Francis, W.R., and Canfield, D.E. 2018. Animal origins and the Tonian Earth system. Emerging Topics in Life Sciences, 2: 289-298. doi: 10.1042/ETLS20170160
  37. Mills, D.B., Francis, W.R., Vargas, S., Larsen, M., Elemans, C.P., Canfield, D.E., and Wörheide, G. 2018. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. Elife, 7: e31176. doi: 10.7554/eLife.31176.001
  38. Muscente, A.D., Boag, T.H., Bykova, N., and Schiffbauer, J.D. 2018. Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life. Earth-Science Reviews, 177: 248–264. doi: 10.1016/j.earscirev.2017.11.019
  39. Muscente, A.D., Czaja, A.D., Tuggle, J., Winkler, C., and Xiao, S. 2018. Manganese oxides resembling microbial fabrics and their implications for recognizing inorganically preserved microfossils. Astrobiology, 18: 249-258. doi: 10.1089/ast.2017.1699
  40. Myrow, P.M., Lamb, M.P., and Ewing, R. 2018. Rapid sea level rise in the aftermath of Snowball Earth. Science, 360: 649-651. doi: 10.1126/science.aap8612​
  41. Okubo, J., Muscente, A.D., Luvizotto, G.L., Uhlein, G.J., and Warren, L.V. 2018. Phosphogenesis, aragonite fan formation and seafloor environments following the Marinoan glaciation. Precambrian Research, 311: 24-36. doi: 10.1016/j.precamres.2018.04.002
  42. Palacios, T., Jensen, S., Barr, S.M., White, C.E., and Myrow, P. 2018. Organic-walled microfossils from the Ediacaran–Cambrian boundary stratotype section, Chapel Island Formation and Random Formation, Burin Peninsula, Newfoundland, Canada: Global correlation and significance for the evolution of early complex ecosystems. Geological Journal, 53: 1728-1742. doi: 10.1002/gj.2998
  43. Padel, M., Clausen, S., Álvaro, J.J., and Casas, J.M. 2018. Review of the Ediacaran-Lower Ordovician (pre-Sardic) stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geologica Acta, 16: 339-355. doi: 10.1344/GeologicaActa2018.16.4.1
  44. Padel, M., Álvaro, J.J., Casas, J.M., Clausen, S., Poujol, M., and Sánchez-García, T. 2018. Cadomian volcanosedimentary complexes across the Ediacaran-Cambrian transition of the Eastern Pyrenees, southwestern Europe. International Journal of Earth Sciences, 107: 1579-1601. doi: 10.1007/s00531-017-1559-5
  45. Pang, K., Tang, Q., Chen, L., Wan, B., Niu, C., Yuan, X., and Xiao, S. 2018. Nitrogen-fixing heterocystous cyanobacteria in the Tonian Period. Current Biology, 28: 616-622. doi: 10.1016/j.cub.2018.01.008
  46. Qi, C., Li, C., Gabbott, S.E., Ma, X., Xie, L., Deng, W., Jin, C., and Hou, X. 2018. Influence of redox conditions on animal distribution and soft-bodied fossil preservation of the Lower Cambrian Chengjiang Biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 507: 180-187. doi: 10.1016/j.palaeo.2018.07.010
  47. Reid, L.M, García-Bellido, D.C., and Gehling, J.G. 2018. An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata population from Crisp Gorge, South Australia. Journal of Paleontology, 92: 313-322. doi: 10.1017/jpa.2017.142
  48. Retallack, G.J. 2018. The Devonian Problematicum Protonympha as another post Ediacaran vendobiont. Lethaia, 51: 406-423. doi: 10.1111/let.12253
  49. Scheller, E.L., Dickson, A.J., Canfield, D.E., Korte, C., Kristiansen, K.K., Dahl, T.W. 2018. Ocean redox conditions between the Snowballs–geochemical constraints from Arena Formation, East Greenland. Precambrian Research, 319: 173-186. doi: 10.1016/j.precamres.2017.12.009
  50. Sergeev, V.N. 2018. The biostratigraphic paradox of Precambrian cyanobacteria: Distinguishing the succession of microfossil assemblages and evolutionary changes observed among Proterozoic prokaryotic microorganisms. Paleontological Journal, 52: 1148–1161. doi: 10.1134/S0031030118100131
  51. Shang, X., Moczydłowska, M., Liu, P., Liu, L. 2018. Organic composition an diagenetic mineralization of microfossils in the Ediacaran Doushantuo chert nodules by Raman and petrographic analyses. Precambrian Research, 314: 145–159. doi: 10.1016/j.precamres.2018.05.029
  52. Shi, W., Li, C., Luo, G., Huang, J., Algeo, T.J., Jin, C., Zhang, Z., and Cheng, M. 2018. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology, 46: 267-270. doi: 10.1130/G39663.1
  53. Sun, H., Smith, M.R., Zeng, H., Zhao, F., Li, G., Zhu, M. 2018. Hyoliths with pedicles illuminate the origin of the brachiopod body plan. Proc. R. Soc. B, 285: 20181780. doi: 10.1098/rspb.2018.1780
  54. Sun, H., Malinky, J.M., Zhu, M., Huang, D. 2018. Palaeobiology of orthothecide hyoliths from the Cambrian Manto Formation of Hebei Province, North China. Acta Palaeontologica Polonica, 63: 87-101. doi: 10.4202/app.00413.2017
  55. Tarhan, L.G., Droser, M.L., Cole, D.B., and Gehling, J.G. 2018. Ecological expansion and extinction in the late Ediacaran: weighing the evidence for environmental and biotic drivers. Integrative and Comparative Biology, 58: 688-702. doi: 10.1093/icb/icy020
  56. Tarhan, L.G., Planavsky, N.J., Wang, X., Bellefroid, E.J., Droser, M.L., and Gehling, J.G. 2018. Late-stage ‘ferruginization’ of the Ediacara Member (Rawnsley Quartzite, South Australia): Insights from uranium isotopes: Geobiology, 16: 35-48. doi: 10.1111/gbi.12262
  57. Vaziri, S.H. and Laflamme, M. 2018. Lithostratigraphy and sedimentary environment of the Precambrian Kushk Series of Central Iran. Canadian Journal of Earth Sciences, 55: 1284-1296. doi: 10.1139/cjes-2017-0234
  58. Vickers-Rich, P., Soleimani, S., Farjandi, F., Zand, M., Linnemann, U., Hofmann, M., Wilson, S.A., Cas, R., and Rich, T.H. 2018. A preliminary report on new Ediacaran fossils from Iran. Alcheringa: An Australasian Journal of Palaeontology, 42: 230-243. doi: 10.1080/03115518.2017.1384061
  59. Vorobeva V.G. and V.N. Sergeev. 2018. Stellarossica gen. nov. and the infragroup Keltmiides infragroup. nov.: Extremely large acanthomorph acritarchs from the Vendian of Siberia and the East European Platform. Paleontological Journal, 52: 563–573. doi: 10.1134/S0031030118040147
  60. Walde, D.H.G., Erdtmann, BD., Do Carmo, D.A., Karfunkel, J., Silva, A.B., and Pollmann, H. 2018. Skelettbildende Fossilien aus dem späten Ediacarium von Corumbá (West-Brasilien): Corumbella und Cloudina. (Skeletal fossils from the late Ediacarium from Corumbá-W-Brazil: Corumbella and Cloudina.) Der Aufschluss, 2: 122-137.
  61. Walde, D.H.G., Karfunkel, J, Poellmann, H, Silva, A., and Silva, B.L.P. 2018. Die neoproterozoischen Eisen-und Manganerzlagerstaetten von Urucum/Mutum in W-Brasilien/SE-Bolivien: ein Überblick. (Neoproterozoic Fe- and Mn ore deposits of Urucum/Mutum in W-Brazil/SE-Bolívia: Overview). Der Aufschluss, 2: 81-97.
  62. Wang, X., Jiang, G., Shi, X., Peng, Y., and Morales, D.C. 2018. Nitrogen isotope constraints on the early Ediacaran ocean redox structure: Geochimica et Cosmochimica Acta, 240: 220-235. doi: 10.1016/j.gca.2018.08.034
  63. Wang, D., Ling, H., Struck, U., Zhu, X.-K., Zhu, M., He, T., Yang, B., Gamper, A., and Shields, G.A. 2018. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. Nature Communications, 9: 1-8. doi: 10.1038/s41467-018-04980-5
  64. Wei, G.-Y., Planavsky, N.J., Tarhan, L.G., Chen, X., Wei, W., Li, D., and Ling, H.-F. 2018. Marine redox fluctuation as a potential trigger for the Cambrian explosion: Geology, 46: 587-590. doi: 10.1130/G40150.1
  65. Witkosky, R. and Wernicke, B.P. 2018. Subsidence history of the Ediacaran Johnnie Formation and related strata of southwest Laurentia: Implications for the age and duration of the Shuram isotopic excursion and animal evolution: Geosphere, 14: 2245–2276. doi: 10.1130/GES01678.1
  66. Wood, R.A and Penny, A.M. 2018. Substrate growth dynamics and biomineralisation of an Ediacaran encrusting poriferan. Proceedings Royal Society B: Biological Sciences, 285: 20171938. doi: 10.1098/rspb.2017.1938
  67. Wood, R. 2018. Exploring the drivers of early biomineralization. Emerging Topics in Life Sciences, 2 (2): 201–212. doi: 10.1042/ETLS20170164
  68. Wood, R., Bowyer, F., Penny, A.M., and Poulton, S.W. 2018. Did unstable redox terminate Ediacaran communities? Precambrian Research, 313: 134-147. doi: 10.1016/j.precamres.2018.05.011
  69. Xiao, S., do Carmo, D., Walde, D., Silva, A.M., Denezine, M., and Silva, A. 2018. Field workshop on the Ediacaran Corumba Group of southwestern Brazil. Episodes, 41: 207-211.
  70. Xiao, S. and Tang, Q. 2018. After the boring billion and before the freezing millions: evolutionary patterns and innovations in the Tonian Period. Emerging Topics in Life Sciences, 2: 161-171. doi: 10.1042/ETLS20170165
  71. Yang, C., Li, X.H., Zhu, M., Condon, D.J., and Chen, J. 2018. Geochronological constraint on the Cambrian Chengjiang biota, South China. Journal of the Geological Society, 175: 659-666. doi: 10.1144/jgs2017-103
  72. Ye, Q., Tong, J., An, Z., Hu, J., Tian, L., Guan, K., and Xiao, S. 2018. Carbonaceous compression macrofossils from the upper Ediacaran Miaohe Member in South China. Journal of Systematic Palaeontology, 17: 183-238. doi: 10.1080/14772019.2017.1404499
  73. Yin, Z., Zhao, D., Pan, B., Zhao, F., Zeng, H., Li, G., Bottjer, D.J., and Zhu, M. 2018. Early Cambrian animal diapause embryos revealed by X-ray tomography. Geology, 46: 387-390. doi: 10.1130/G40081.1
  74. Zang, K., Zhu, K., Wood, R.A., Shi, Y., Gao, Z., and Poulton, S.W. 2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Communications, 11.5: 345-350. doi: 10.1038/s41561-018-0111-y
  75. Zeng, H., Zhao, F., Yin, Z., Zhu, M. 2018. A new radiodontan oral cone with a combination of anatomical features from the early Cambrian Guanshan Lagerstätte, eastern Yunnan, South China. Journal of Paleontology, 92: 40-48. doi: 10.1017/jpa.2017.77
  76. Zeng, H., Zhao, F., Yin, Z., Zhu, M. 2018. Morphology of diverse radiodontan head sclerites from the early Cambrian Chengjiang Lagerstätte, south-west China. Journal of Systematic Palaeontology, 16: 1-37. doi: 10.1080/14772019.2016.1263685
  77. Zhang, F., Xiao, S., Kendall, B., Romaniello, S.J., Cui, H., Meyer, M., Gilleaudeau, G.J., Kaufman, A.J., and Anbar, A.D. 2018. Extensive marine anoxia during the terminal Ediacaran Period. Science Advances, 4: eaan8983. doi: 10.1126/sciadv.aan8983​
  78. Zhang, Z., Li, C., Cheng, M., Algeo, T.J., Jin, C., Tang, F., and Huang, J. 2018. Evidence for highly complex redox conditions and strong water-column stratification in an early Cambrian continental margin sea. Geochemistry, Geophysics, Geosystems, 19: 2397–2410. doi: 10.1029/2018GC007666​​
  79. Zhuravlev, A.Y. and Wood, R.A. 2018. Two phases to the Cambrian Explosion. Scientific Reports, 8: 1-10. doi: 10.1038/s41598-018-34962-y